Unsupervised data to content transformation with histogram-matching cycle-consistent generative adversarial networks
نویسندگان
چکیده
منابع مشابه
Generative Adversarial Networks with Inverse Transformation Unit
In this paper we introduce a new structure to Generative Adversarial Networks by adding an inverse transformation unit behind the generator. We present two theorems to claim the convergence of the model, and two conjectures to nonideal situations when the transformation is not bijection. A general survey on models with different transformations was done on the MNIST dataset and the Fashion-MNIS...
متن کاملUnsupervised Image-to-Image Translation with Generative Adversarial Networks
It’s useful to automatically transform an image from its original form to some synthetic form (style, partial contents, etc.), while keeping the original structure or semantics. We define this requirement as the ”image-to-image translation” problem, and propose a general approach to achieve it, based on deep convolutional and conditional generative adversarial networks (GANs), which has gained ...
متن کاملUnsupervised Diverse Colorization via Generative Adversarial Networks
Colorization of grayscale images is a hot topic in computer vision. Previous research mainly focuses on producing a color image to recover the original one in a supervised learning fashion. However, since many colors share the same gray value, an input grayscale image could be diversely colorized while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse c...
متن کاملUnsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks
Learning to transfer visual attributes requires supervision dataset. Corresponding images with varying attribute values with the same identity are required for learning the transfer function. This largely limits their applications, because capturing them is often a difficult task. To address the issue, we propose an unsupervised method to learn to transfer visual attribute. The proposed method ...
متن کاملUnsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Machine Intelligence
سال: 2019
ISSN: 2522-5839
DOI: 10.1038/s42256-019-0096-2